Fine-tuning large language models is becoming ever more impractical due to their rapidly-growing scale. This motivates the use of parameter-efficient adaptation methods such as prompt tuning (PT), which adds a small number of tunable embeddings to an otherwise frozen model, and in-context learning (ICL), in which demonstrations of the task are provided to the model in natural language without any additional training. Recently, Singhal et al. (2022) propose ``instruction prompt tuning'' (IPT), which combines PT with ICL by concatenating a natural language demonstration with learned prompt embeddings. While all of these methods have proven effective on different tasks, how they interact with each other remains unexplored. In this paper, we empirically study when and how in-context examples improve prompt tuning by measuring the effectiveness of ICL, PT, and IPT on five text generation tasks with multiple base language models. We observe that (1) IPT does \emph{not} always outperform PT, and in fact requires the in-context demonstration to be semantically similar to the test input to yield improvements; (2) PT is unstable and exhibits high variance, but combining PT and ICL (into IPT) consistently reduces variance across all five tasks; and (3) prompts learned for a specific source task via PT exhibit positive transfer when paired with in-context examples of a different target task. Our results offer actionable insights on choosing a suitable parameter-efficient adaptation method for a given task.
翻译:微调大型语言模型由于规模的迅速扩大而变得越来越不切实际。 这促使人们使用节能的参数适应方法,例如快速调试(PT),它增加了少量的金枪鱼混凝土嵌入到原本冻结的模式中,以及文本内学习(ICL),其中以自然语言向模型演示任务,而无需任何额外的培训。最近,Singhal等人(2022)提出“快速调试”(IPT),它将PT与ICL结合起来,方法是将自然语言演示与学习迅速嵌入的快速嵌入结合起来。虽然所有这些方法在不同的任务上都证明有效,但它们是如何相互互动的。 在本论文中,我们实验性地研究文本内的例子如何通过测量ICL、PT和IPT的效能来迅速调整模型。我们观察到:(1)IPT的“快速调试”和IPL(IMT)的直截面选择,并且事实上要求文中演示是自定义性演示的,但是要通过测试性变异性化和高清晰性化的方法进行改进;我们的工作是持续地将I-变现任务与I-定出一个不固定和透明性的工作。