Recent theoretical results in quantum machine learning have demonstrated a general trade-off between the expressive power of quantum neural networks (QNNs) and their trainability; as a corollary of these results, practical exponential separations in expressive power over classical machine learning models are believed to be infeasible as such QNNs take a time to train that is exponential in the model size. We here circumvent these negative results by constructing a hierarchy of efficiently trainable QNNs that exhibit unconditionally provable, polynomial memory separations of arbitrary constant degree over classical neural networks -- including state-of-the-art models, such as Transformers -- in performing a classical sequence modeling task. This construction is also computationally efficient, as each unit cell of the introduced class of QNNs only has constant gate complexity. We show that contextuality -- informally, a quantitative notion of semantic ambiguity -- is the source of the expressivity separation, suggesting that other learning tasks with this property may be a natural setting for the use of quantum learning algorithms.
翻译:暂无翻译