A temporal graph is a graph whose edges are available only at specific times. In this scenario, the only valid walks are the ones traversing adjacent edges respecting their availability, i.e. sequence of adjacent edges whose appearing times are non-decreasing. Temporal paths are temporal walks where each vertex is not traversed twice, i.e. time instants of each vertex, called temporal vertices, are visited consecutively. While on static graphs Menger's Theorem relies on disjoint paths, in temporal graphs the literature has focused on disjoint temporal walks. In this paper we focus on Menger's Theorem for temporal paths that are disjoint in temporal vertices. Given two vertices $s$ and $t$, let $k$ be equal to the maximum number of temporal vertex disjoint $s,t$-paths. We prove that $k$ is equal to the minimum number of temporal vertices to be removed to break all the $s,t$-paths, i.e. Menger's Theorem holds, if and only if $k=1$. The latter property also allows us to show that the related max-paths problem in temporal graphs is polynomial when $k\le 2$. This is best possible as we prove that such problem is \NP-hard when $k\ge 3$ for the directed case. Finally, we also give hardness results and an XP algorithm for the related min-cut problem.
翻译:时间图是一个图表, 其边缘只在特定时间才能使用。 在此情况下, 唯一有效的行走是那些在相邻的边缘上穿行的, 以其可用性为基准, 即相邻边缘的顺序, 其出现的时间是非递减的。 时间线路是时间行走, 每一个顶点没有翻过两次, 即每个顶点的时速, 称为时间顶点, 连续访问。 在静态图形上, Menger 的理论依赖脱节路径, 在时间图中, 文献侧重于脱节时间行走。 在本文中, 我们侧重于在时间顶点上脱节时间行走的 Menger 时间行走的顺序。 鉴于两个顶点是时间行道, 美元和美元, 美元行道是每个顶点的瞬间断裂的最大次数, 称为时间顶点。 我们证明, 美元与最小的瞬流数相等, 要折断掉所有美元, 美元行走的路程, i. Menger 的时, 时间轨迹是短路 。 如果 也显示 后座 问题, 最有可能 。