Computer experiments can emulate the physical systems, help computational investigations, and yield analytic solutions. They have been widely employed with many engineering applications (e.g., aerospace, automotive, energy systems. Conventional Bayesian optimization did not incorporate the nested structures in computer experiments. This paper proposes a novel nested Bayesian optimization for complex computer experiments with multi-step or hierarchical characteristics. We prove the theoretical properties of nested outputs given two cases: Gaussian or non-Gaussian. The closed forms of nested expected improvement are derived. We also propose the computational algorithms for nested Bayesian optimization. Three numerical studies show that the proposed nested Bayesian optimization outperforms the five benchmark Bayesian optimization methods ignoring the intermediate outputs of the inner computer code. The case study shows that the nested Bayesian optimization can efficiently minimize the residual stress during composite structures assembly and avoid convergence to the local optimum.
翻译:计算机实验可以模仿物理系统,帮助计算调查,并产生分析解决方案。 它们被广泛用于许多工程应用(如航空航天、汽车、能源系统等)。 常规贝叶斯优化没有将嵌套结构纳入计算机实验。 本文提议为具有多步或等级特点的复杂计算机实验进行新颖的巢湾优化。 我们证明巢产物的理论特性有两个例子:高西亚或非高萨。 生成了巢状改进的封闭形式。 我们还提出了巢状贝叶斯优化的计算算法。 三个数字研究表明,拟议巢状贝叶斯优化方法优于五个基准贝叶斯优化方法,而忽略了内部计算机代码的中间输出。 案例研究表明,巢状贝叶斯优化可以在复合结构组装过程中有效减少残余压力,避免与当地的最佳组合。