Computer experiments can emulate the physical systems, help computational investigations, and yield analytic solutions. They have been widely employed with many engineering applications (e.g., aerospace, automotive, energy systems. Conventional Bayesian optimization did not incorporate the nested structures in computer experiments. This paper proposes a novel nested Bayesian optimization for complex computer experiments with multi-step or hierarchical characteristics. We prove the theoretical properties of nested outputs given two cases: Gaussian or non-Gaussian. The closed forms of nested expected improvement are derived. We also propose the computational algorithms for nested Bayesian optimization. Three numerical studies show that the proposed nested Bayesian optimization outperforms the five benchmark Bayesian optimization methods ignoring the intermediate outputs of the inner computer code. The case study shows that the nested Bayesian optimization can efficiently minimize the residual stress during composite structures assembly and avoid convergence to the local optimum.


翻译:计算机实验可以模仿物理系统,帮助计算调查,并产生分析解决方案。 它们被广泛用于许多工程应用(如航空航天、汽车、能源系统等)。 常规贝叶斯优化没有将嵌套结构纳入计算机实验。 本文提议为具有多步或等级特点的复杂计算机实验进行新颖的巢湾优化。 我们证明巢产物的理论特性有两个例子:高西亚或非高萨。 生成了巢状改进的封闭形式。 我们还提出了巢状贝叶斯优化的计算算法。 三个数字研究表明,拟议巢状贝叶斯优化方法优于五个基准贝叶斯优化方法,而忽略了内部计算机代码的中间输出。 案例研究表明,巢状贝叶斯优化可以在复合结构组装过程中有效减少残余压力,避免与当地的最佳组合。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2020年9月6日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2020年9月6日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员