A great challenge in speaker representation learning using deep models is to design learning objectives that can enhance the discrimination of unseen speakers under unseen domains. This work proposes a supervised contrastive learning objective to learn a speaker embedding space by effectively leveraging the label information in the training data. In such a space, utterance pairs spoken by the same or similar speakers will stay close, while utterance pairs spoken by different speakers will be far apart. For each training speaker, we perform random data augmentation on their utterances to form positive pairs, and utterances from different speakers form negative pairs. To maximize speaker separability in the embedding space, we incorporate the additive angular-margin loss into the contrastive learning objective. Experimental results on CN-Celeb show that this new learning objective can cause ECAPA-TDNN to find an embedding space that exhibits great speaker discrimination. The contrastive learning objective is easy to implement, and we provide PyTorch code at https://github.com/shanmon110/AAMSupCon.


翻译:使用深层模型进行语音代表学习的巨大挑战是设计学习目标,从而在无形领域加强对看不见的讲者的歧视。这项工作提出了一个监督的对比性学习目标,通过有效利用培训数据中的标签信息学习发言者嵌入空间。在这样一个空间,同一或类似的发言者的配对话将保持近距离,而不同发言者的配对话将大相径庭。对于每个培训发言者,我们随机增加其言论的数据,以形成正面的配对,不同发言者的配方话则以负面的配对形式表达。为了最大限度地增加嵌入空间中的演讲者的分离性,我们将三角形损失添加到对比性学习目标中。CN-Celeb的实验结果显示,这一新学习目标可以使ECAPA-TDNN找到一个嵌入空间,展示出伟大的演讲者歧视。对比性学习目标很容易实现,我们在 https://github.com/shanmon110/AMSupCon提供PyTorch代码。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月19日
Arxiv
13+阅读 · 2022年10月20日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员