项目名称: 极端条件下元素液体(Se和I2)的结构和性质研究

项目编号: No.11504354

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 柳雷

作者单位: 中国工程物理研究院流体物理研究所

项目金额: 21万元

中文摘要: 极端条件(高温高压)下物质的结构和性质是凝聚态物理、材料科学和地球科学等学科关注的重要课题。因此,众多研究者对晶体材料在极端条件下的结构相变和物性进行了广泛而深入的研究。与晶体材料相比,液体由于长程周期性的缺失,基于晶体平移周期性的方法与理论对液体不再适用,这使得液体的结构和物性研究变得困难重重。至今尚未建立液体普适的结构模型和理论框架。而对液体的认识是认识凝聚态物质的重要组成部分,也是人类认识地球内部物质和能量输运过程的知识基础。本项目以液体Se和I2为研究对象,通过X射线衍射/散射技术来研究其结构随温度和压力的变化。同时,对结构变化过程中液体Se和I2的密度、粘度和声速等性质进行系统测量。试图弄清基本元素液体在高温高压条件下的结构如何演变?以及液体Se和I2性质突变与结构相变之间有何关系?为液体结构模型及相变理论的研究提供重要的实验数据。

中文关键词: 高温高压;液体结构;相变;粘度;声速

英文摘要: The structure and properties of materials under extreme conditions (high temperature and high pressure) are of great interesting in condensed matter physics, material science, and geophysics. Consequently, the structure phase transition and properties of crystal materials were investigated widely in the past decades. However, because of the absence of periodicity in the structure, the theories of crystal are no longer valid for liquids, which leads to great difficulties in structure and properties study on liquids. There are no universal structure models and theories for liquid to date. The knowledge of liquid is an important constituent part of the knowledge of condensed matter, and is crucial for people to understand the matter and energy transportation in the interior of the Earth. In the present study, we focus on the elemental liquids of selenium and iodine. We plan to investigate the structures of liquid selenium and iodine at high pressures and high temperatures by X-ray diffraction/scattering technologies. We also plan to determine the density, viscosity and sound velocity of liquid selenium and iodine as a function of pressure and/or temperature. We try to figure out how the structure evolves with increasing pressure and temperature, and the relationship between the structure transition and the properties change of liquid. These results are valuable data for establishing the universal structure model and theories for liquid.

英文关键词: high temperature and high pressure;structure of liquid;phase transition;viscosity;sound velocity

成为VIP会员查看完整内容
0

相关内容

深度生成模型综述
专知会员服务
50+阅读 · 2022年1月2日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
AI从底物和酶的结构中预测米氏常数,量化酶活性
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员