We introduce repriorisation, a data-dependent reparameterisation which transforms a Bayesian neural network (BNN) posterior to a distribution whose KL divergence to the BNN prior vanishes as layer widths grow. The repriorisation map acts directly on parameters, and its analytic simplicity complements the known neural network Gaussian process (NNGP) behaviour of wide BNNs in function space. Exploiting the repriorisation, we develop a Markov chain Monte Carlo (MCMC) posterior sampling algorithm which mixes faster the wider the BNN. This contrasts with the typically poor performance of MCMC in high dimensions. We observe up to 50x higher effective sample size relative to no reparametrisation for both fully-connected and residual networks. Improvements are achieved at all widths, with the margin between reparametrised and standard BNNs growing with layer width.
翻译:我们引入了重新定位,即数据依赖的重新定位,将Bayesian神经网络(BNN)的后端转换成其 KL 与 BNN 的差值随着层宽度增长而先前消失的分布。 重新定位地图直接对参数起作用,其分析简单性补充了已知的神经网络Gaussian 进程(NNGP) 在功能空间的宽宽宽的BNNs 进程。 利用重新定位,我们开发了Markov 链 Monte Carlo (MCMC ) 后端取样算法,将BNN 的宽度混杂得更快。 这与 MMC 通常低的高度性能形成对比。 我们观测到高达50x的有效样本大小,而不是完全连接的和剩余网络的再校正。 在所有宽度上都实现了改进, 重新校正和标准 BNNN 之间的边距随着层宽度增长。