We introduce a new deal of kernel density estimation using an exponentiated form of kernel density estimators. The density estimator has two hyperparameters flexibly controlling the smoothness of the resulting density. We tune them in a data-driven manner by minimizing an objective function based on the Hyv\"arinen score to avoid the optimization involving the intractable normalizing constant due to the exponentiation. We show the asymptotic properties of the proposed estimator and emphasize the importance of including the two hyperparameters for flexible density estimation. Our simulation studies and application to income data show that the proposed density estimator is appealing when the underlying density is multi-modal or observations contain outliers.
翻译:我们引入了一种新的内核密度估计交易, 使用一种放大式的内核密度估计器。 密度估计器有两个超参数, 灵活控制由此产生的密度的平滑性。 我们以数据驱动的方式调整它们, 根据 Hyv\'arinenn 评分, 最大限度地减少一个客观函数, 以避免因推算而导致的难以调和的常数的优化。 我们展示了拟议内核测算器的无症状特性, 并强调了纳入两个超参数对于弹性密度估计的重要性 。 我们的模拟研究和收入数据应用显示, 当基本密度为多模式或观测含有外源值时, 拟议的密度估计器具有吸引力 。