Sensitivity analysis measures the influence of a Bayesian network's parameters on a quantity of interest defined by the network, such as the probability of a variable taking a specific value. Various sensitivity measures have been defined to quantify such influence, most commonly some function of the quantity of interest's partial derivative with respect to the network's conditional probabilities. However, computing these measures in large networks with thousands of parameters can become computationally very expensive. We propose an algorithm combining automatic differentiation and exact inference to efficiently calculate the sensitivity measures in a single pass. It first marginalizes the whole network once, using e.g. variable elimination, and then backpropagates this operation to obtain the gradient with respect to all input parameters. Our method can be used for one-way and multi-way sensitivity analysis and the derivation of admissible regions. Simulation studies highlight the efficiency of our algorithm by scaling it to massive networks with up to 100'000 parameters and investigate the feasibility of generic multi-way analyses. Our routines are also showcased over two medium-sized Bayesian networks: the first modeling the country-risks of a humanitarian crisis, the second studying the relationship between the use of technology and the psychological effects of forced social isolation during the COVID-19 pandemic. An implementation of the methods using the popular machine learning library PyTorch is freely available.
翻译:感官分析测量了巴伊西亚网络参数对网络确定的利益数量的影响,例如变数占特定价值的概率; 界定了各种敏感度措施,以量化这种影响,最常见的是利息部分衍生物数量相对于网络有条件概率的某种函数; 但是,在具有数千个参数的大型网络中计算这些措施,可能会变得非常昂贵; 我们提议一种算法,将自动差别和精确推法结合起来,以有效计算单一通道的敏感度尺度; 它首先将整个网络边缘化一次,例如利用变数消除,然后反向调整这一操作,以获得所有输入参数的梯度; 我们的方法可用于单向和多向敏感度分析以及可接受区域的衍生。 模拟研究强调我们的算法效率,将它扩大至有100 000个参数的大型网络,并调查通用多路分析的可行性。 我们的常规也通过两个中等规模的巴伊西亚网络展示了:例如,利用各种变数消除,然后反向调整整个网络,以获得所有输入参数的梯度。 我们的方法可用于单向和多向的偏差分析; 我们的方法可以用来进行单向和多向分析; 我们的算算法的算法的算法的算法,通过两个中等网络展示了我们的算法是两个中等网络: 使用人道主义危机的国家风险第一个模型, 使用磁度; 使用磁波氏测测测测测算法的系统,在磁测测算法的系统在磁测测测的心理学的系统; 使用磁法的实验法的实验法在磁法的实验法的实验法的实验法的实验法在磁法在磁法的实验法在磁法的实验法的实验法的实验法在磁法在磁法的实验法的实验法的实验法的实验法的实验法在磁法在磁法在磁法的实验法的实验法的实验法的实验法的实验法的实验法在磁法的实验法的实验法的实验法的实验法的实验法的实验法的实验法在使用。