For the most comfortable, human-aware robot navigation, subjective user preferences need to be taken into account. This paper presents a novel reinforcement learning framework to train a personalized navigation controller along with an intuitive virtual reality demonstration interface. The conducted user study provides evidence that our personalized approach significantly outperforms classical approaches with more comfortable human-robot experiences. We achieve these results using only a few demonstration trajectories from non-expert users, who predominantly appreciate the intuitive demonstration setup. As we show in the experiments, the learned controller generalizes well to states not covered in the demonstration data, while still reflecting user preferences during navigation. Finally, we transfer the navigation controller without loss in performance to a real robot.
翻译:对于最舒适、最有人类意识的机器人导航,需要考虑主观用户的偏好。本文件展示了一个新的强化学习框架,用于培训个性化导航控制器以及直观虚拟现实演示界面。进行中的用户研究提供了证据,证明我们的个性化方法大大优于传统方法,具有更舒适的人类机器人经验。我们仅使用非专家用户的一些示范轨迹来取得这些结果,这些非专家用户主要赞赏直觉演示设置。正如我们在实验中所显示的那样,学习的导航控制器向没有在演示数据中覆盖的国家全面概括,同时仍然反映导航期间用户的偏好。最后,我们将导航控制器的性能无损转让给真正的机器人。