Large-scale object detection and instance segmentation face a severe data imbalance. The finer-grained object classes become, the less frequent they appear in our datasets. However, at test-time, we expect a detector that performs well for all classes and not just the most frequent ones. In this paper, we provide a theoretical understanding of the long-trail detection problem. We show how the commonly used mean average precision evaluation metric on an unknown test set is bound by a margin-based binary classification error on a long-tailed object detection training set. We optimize margin-based binary classification error with a novel surrogate objective called \textbf{Effective Class-Margin Loss} (ECM). The ECM loss is simple, theoretically well-motivated, and outperforms other heuristic counterparts on LVIS v1 benchmark over a wide range of architecture and detectors. Code is available at \url{https://github.com/janghyuncho/ECM-Loss}.
翻译:大型天体探测和试例分解面临严重的数据不平衡。 细微颗粒对象类别会变得较不常见, 它们出现在我们的数据集中。 然而, 在测试时, 我们期望一个对所有舱位都表现良好的探测器, 而不仅仅是最常见的探测器。 在本文中, 我们从理论上理解了长拖探测问题。 我们显示了一个未知测试集上常用的普通平均平均精确度评价指标是如何受长尾物体探测训练组基于边际的二进制分类错误的约束的。 我们优化基于边际的二进制分类错误, 其新颖的代用目标 \ textbf{ 有效类- Margin Loss} ( EMM ) 。 EMM 损失很简单, 理论上动机良好, 并且超越了 LVIS v1 中用于各种建筑和探测器的基准的其他超值性对应方。 代码可在 url{https://github.com/janghyuncho/ ECM- Loss} 上查阅 。