Bayesian methods are a popular choice for statistical inference in small-data regimes due to the regularization effect induced by the prior. In the context of density estimation, the standard nonparametric Bayesian approach is to target the posterior predictive of the Dirichlet process mixture model. In general, direct estimation of the posterior predictive is intractable and so methods typically resort to approximating the posterior distribution as an intermediate step. The recent development of quasi-Bayesian predictive copula updates, however, has made it possible to perform tractable predictive density estimation without the need for posterior approximation. Although these estimators are computationally appealing, they tend to struggle on non-smooth data distributions. This is due to the comparatively restrictive form of the likelihood models from which the proposed copula updates were derived. To address this shortcoming, we consider a Bayesian nonparametric model with an autoregressive likelihood decomposition and a Gaussian process prior. While the predictive update of such a model is typically intractable, we derive a quasi-Bayesian predictive update that achieves state-of-the-art results in small-data regimes.
翻译:贝叶斯方法在小型数据制度中是一种流行的统计推论选择,原因是先前的正规化效应。在密度估计方面,标准的、非参数的巴伊西亚方法是针对Drichlet 混合模型的事后预测。一般而言,直接估计后方预测是棘手的,因此通常采用近后方分布的近似方法作为中间步骤。但最近开发的准巴伊西亚预测相交更新使得有可能进行可移动的预测密度估计,而不需要近距离近似。虽然这些估计者在计算上具有吸引力,但它们倾向于在非移动数据分布上挣扎。这归因于拟议相交器更新所依据的各种可能性模型的相对限制性形式。为了解决这一缺陷,我们认为,一种具有自动递减可能性的巴伊西亚非参数模型和先前的高斯进程是非典型的。虽然这种模型的预测更新通常比较难用,但我们在小型的Bayesian预测系统中获取了一种准巴伊耶斯预测性更新,从而实现状态数据更新。