Recipe recommendation systems play an essential role in helping people decide what to eat. Existing recipe recommendation systems typically focused on content-based or collaborative filtering approaches, ignoring the higher-order collaborative signal such as relational structure information among users, recipes and food items. In this paper, we formalize the problem of recipe recommendation with graphs to incorporate the collaborative signal into recipe recommendation through graph modeling. In particular, we first present URI-Graph, a new and large-scale user-recipe-ingredient graph. We then propose RecipeRec, a novel heterogeneous graph learning model for recipe recommendation. The proposed model can capture recipe content and collaborative signal through a heterogeneous graph neural network with hierarchical attention and an ingredient set transformer. We also introduce a graph contrastive augmentation strategy to extract informative graph knowledge in a self-supervised manner. Finally, we design a joint objective function of recommendation and contrastive learning to optimize the model. Extensive experiments demonstrate that RecipeRec outperforms state-of-the-art methods for recipe recommendation. Dataset and codes are available at https://github.com/meettyj/RecipeRec.
翻译:食谱建议系统在帮助人们决定吃什么方面发挥着必不可少的作用。 现有的食谱建议系统通常侧重于内容基础或协作过滤方法, 忽略了更高层次的协作信号, 如用户、 食谱和食物物品之间的关系结构信息。 在本文件中, 我们正式确定了配方建议的问题, 以图表方式将合作信号纳入食谱建议中。 特别是, 我们首先展示了URI- Grph, 这是一种新的和大规模用户- 反应编辑图。 然后我们提出了 RepeeRec, 一种新颖的多元图表学习模式, 供食谱建议使用。 提议的模型可以通过具有等级关注和成分配置变异的混合图表神经网络获取食谱内容和协作信号。 我们还引入了一个图形对比强化战略, 以自我监督的方式提取信息性图表知识。 最后, 我们设计了一个建议和对比性学习的联合目标功能, 优化模型。 广泛的实验证明 Reipe rec outformations state- the Art- complemental commissional sub.com/ Recipej/Repetipetional Reveptitutions