【泡泡一分钟】利用三个平面同时标定2D激光雷达和机器人的运动学参数

2019 年 5 月 22 日 泡泡机器人SLAM

每天一分钟,带你读遍机器人顶级会议文章

标题:SCALAR - Simultaneous Calibration of 2D Laser and Robot's Kinematic Parameters Using Three Planar Constraints

作者:Teguh Santoso Lembono, Francisco Su´arez-Ruiz, and Quang-Cuong Pham

来源:IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),2018

编译:黄思宇

审核:颜青松,陈世浪

欢迎个人转发朋友圈;其他机构或自媒体如需转载,后台留言申请授权

摘要

随着工业机器人被越来越多地应用于各种应用中,机器人的精度变的尤为重要,因此需要校准机器人的运动学参数和测量系统的外部参数。然而,现有的校准方法要么太麻烦,要么需要其他昂贵的外部测量系统,例如激光跟踪器或测量自旋臂。在本文中,我们提出了SCALAR,一种可以同时改善6-DoF机器人的运动学参数以及连接到机器人的2D激光测距仪(LRF)的外部参数的校准方法。在机器人周围放置三个平面,对于每个平面,机器人在其面前移动几个姿势,使得2D激光雷达的光线与相应的平面相交。然后使用几何平面约束通过Levenberg-Marquardt非线性优化算法来优化校准参数。我们通过仿真证明,SCALAR可以将机器人系统的平均位置和方向误差从14.6 mm和4.05°减小到0.09 mm和0.02°。

图1 测量设备示意图

                           Abstract

   Industrial robots are increasingly used in various applications where the robot accuracy becomes very important, hence calibrations of the robot’s kinematic parameters and the measurement system’s extrinsic parameters are required. However, the existing calibration approaches are either too cumbersome or require another expensive external measurement system such as laser tracker or measurement spinarm. In this paper, we propose SCALAR, a calibration method to simultaneously improve the kinematic parameters of a 6-DoF robot and the extrinsic parameters of a 2D Laser Range Finder (LRF) that is attached to the robot. Three flat planes are placed around the robot, and for each plane the robot moves to several poses such that the LRF’s ray intersect the respective plane. Geometric planar constraints are then used to optimize the calibration parameters using Levenberg-Marquardt nonlinear optimization algorithm. We demonstrate through simulations that SCALAR can reduce the average position and orientation errors of the robot system from 14.6 mm and 4.05°to 0.09 mm and 0.02°.



如果你对本文感兴趣,请点击点击阅读原文下载完整文章,如想查看更多文章请关注【泡泡机器人SLAM】公众号(paopaorobot_slam)

百度网盘提取码:7byq

欢迎来到泡泡论坛,这里有大牛为你解答关于SLAM的任何疑惑。

有想问的问题,或者想刷帖回答问题,泡泡论坛欢迎你!

泡泡网站:www.paopaorobot.org

泡泡论坛:http://paopaorobot.org/bbs/


泡泡机器人SLAM的原创内容均由泡泡机器人的成员花费大量心血制作而成,希望大家珍惜我们的劳动成果,转载请务必注明出自【泡泡机器人SLAM】微信公众号,否则侵权必究!同时,我们也欢迎各位转载到自己的朋友圈,让更多的人能进入到SLAM这个领域中,让我们共同为推进中国的SLAM事业而努力!

商业合作及转载请联系liufuqiang_robot@hotmail.com

登录查看更多
5

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【开放书】SLAM 中的几何与学习方法,62页pdf
专知会员服务
111+阅读 · 2020年6月5日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
基于视觉的三维重建关键技术研究综述
专知会员服务
164+阅读 · 2020年5月1日
3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
专知会员服务
32+阅读 · 2020年4月24日
【CVPR2020】L2 ^GCN:图卷积网络的分层学习高效训练
专知会员服务
38+阅读 · 2020年3月31日
专知会员服务
87+阅读 · 2019年12月13日
【泡泡一分钟】基于表面的自主三维建模探索
泡泡机器人SLAM
9+阅读 · 2019年9月10日
【泡泡一分钟】变化环境下激光地图辅助视觉惯性定位
泡泡机器人SLAM
15+阅读 · 2019年5月22日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
Monocular Plan View Networks for Autonomous Driving
Arxiv
6+阅读 · 2019年5月16日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关VIP内容
【开放书】SLAM 中的几何与学习方法,62页pdf
专知会员服务
111+阅读 · 2020年6月5日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
基于视觉的三维重建关键技术研究综述
专知会员服务
164+阅读 · 2020年5月1日
3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
专知会员服务
32+阅读 · 2020年4月24日
【CVPR2020】L2 ^GCN:图卷积网络的分层学习高效训练
专知会员服务
38+阅读 · 2020年3月31日
专知会员服务
87+阅读 · 2019年12月13日
相关资讯
Top
微信扫码咨询专知VIP会员