Deep neural networks are usually trained with stochastic gradient descent (SGD), which minimizes objective function using very rough approximations of gradient, only averaging to the real gradient. Standard approaches like momentum or ADAM only consider a single direction, and do not try to model distance from extremum - neglecting valuable information from calculated sequence of gradients, often stagnating in some suboptimal plateau. Second order methods could exploit these missed opportunities, however, beside suffering from very large cost and numerical instabilities, many of them attract to suboptimal points like saddles due to negligence of signs of curvatures (as eigenvalues of Hessian). Saddle-free Newton method is a rare example of addressing this issue - changes saddle attraction into repulsion, and was shown to provide essential improvement for final value this way. However, it neglects noise while modelling second order behavior, focuses on Krylov subspace for numerical reasons, and requires costly eigendecomposion. Maintaining SFN advantages, there are proposed inexpensive ways for exploiting these opportunities. Second order behavior is linear dependence of first derivative - we can optimally estimate it from sequence of noisy gradients with least square linear regression, in online setting here: with weakening weights of old gradients. Statistically relevant subspace is suggested by PCA of recent noisy gradients - in online setting it can be made by slowly rotating considered directions toward new gradients, gradually replacing old directions with recent statistically relevant. Eigendecomposition can be also performed online: with regularly performed step of QR method to maintain diagonal Hessian. Outside the second order modeled subspace we can simultaneously perform gradient descent.


翻译:深心神经网络通常被训练为偏差梯度下行(SGD),这种深心神经网络通常使用非常粗略的梯度近似值来尽量减少客观功能,只是平均到真实的梯度。像动力或ADAM这样的标准方法只考虑一个单一方向,而没有尝试模拟与Exremum的距离 — 忽略了计算出梯度序列的宝贵信息, 往往在某些亚优高原中停滞不前。 第二顺序方法可能会利用这些错失的机会, 但是, 除了代价和数字不稳定性非常大之外, 许多这样的方法会吸引到低于最优化的点, 比如由于曲度迹象( 作为Hessian的偏差值方向)的偏差而吸引到真正的梯度。 Sadle- free Newton 方法是解决这一问题的一个罕见的例子 — 改变马鞍吸引到反转, 并显示为最终值提供了必要的改进。 然而, 在模拟第二顺序行为的同时, 侧重于 Krylov 子空间, 并且需要昂贵的 eigendendecom recocoom 。 保持 Serview 的优势, 有利用这些机会的便宜的方法 。 第二顺序行为行为行为表现是用来的 。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月23日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员