Motivated by image-on-scalar regression with data aggregated across multiple sites, we consider a setting in which multiple independent studies each collect multiple dependent vector outcomes, with potential mean model parameter homogeneity between studies and outcome vectors. To determine the validity of jointly analyzing these data sources, we must learn which of these data sources share mean model parameters. We propose a new model fusion approach that delivers improved flexibility, statistical performance and computational speed over existing methods. Our proposed approach specifies a quadratic inference function within each data source and fuses mean model parameter vectors in their entirety based on a new formulation of a pairwise fusion penalty. We establish theoretical properties of our estimator and propose an asymptotically equivalent weighted oracle meta-estimator that is more computationally efficient. Simulations and application to the ABIDE neuroimaging consortium highlight the flexibility of the proposed approach. An R package is provided for ease of implementation.
翻译:我们考虑一种环境,在这种环境中,每个多独立研究都收集多种依赖矢量的结果,研究与结果矢量之间可能具有平均模型参数同质性。为了确定联合分析这些数据源的有效性,我们必须了解这些数据源中哪些数据源共享平均参数参数参数。我们建议采用一种新的模型聚合方法,使现有方法具有更大的灵活性、统计性能和计算速度。我们提议的方法在每一个数据源和引信中指定一个二次推论函数,根据双向聚合惩罚的新配方,显示整个模型参数矢量。我们建立了我们的估计值的理论属性,并提出一个在计算上更有效率的、不具有等同的加权或触电元估计值的理论属性。模拟和应用ABIDE神经成像联合体突出拟议方法的灵活性。提供了一套R软件,以便于实施。