The notion of tail adversarial stability has been proven useful in obtaining limit theorems for tail dependent time series. Its implication and advantage over the classical strong mixing framework has been examined for max-linear processes, but not yet studied for additive linear processes. In this article, we fill this gap by verifying the tail adversarial stability condition for regularly varying additive linear processes. We in addition consider extensions of the result to a stochastic volatility generalization and to a max-linear counterpart. We also address the invariance of tail adversarial stability under monotone transforms. Some implications for limit theorems in statistical context are also discussed.
翻译:暂无翻译