A method for estimating the conditional average treatment effect under condition of censored time-to-event data called BENK (the Beran Estimator with Neural Kernels) is proposed. The main idea behind the method is to apply the Beran estimator for estimating the survival functions of controls and treatments. Instead of typical kernel functions in the Beran estimator, it is proposed to implement kernels in the form of neural networks of a specific form called the neural kernels. The conditional average treatment effect is estimated by using the survival functions as outcomes of the control and treatment neural networks which consists of a set of neural kernels with shared parameters. The neural kernels are more flexible and can accurately model a complex location structure of feature vectors. Various numerical simulation experiments illustrate BENK and compare it with the well-known T-learner, S-learner and X-learner for several types of the control and treatment outcome functions based on the Cox models, the random survival forest and the Nadaraya-Watson regression with Gaussian kernels. The code of proposed algorithms implementing BENK is available in https://github.com/Stasychbr/BENK.
翻译:提出了一种方法,用于在经过审查的时间-活动数据条件下估计有条件平均治疗效应,称为BENK(BENK)(带有神经内核的BERAN Estimator),该方法的主要想法是应用BERAN估计器来估计控制和处理的存活功能。BERAN测量器的典型内核功能,而不是BERAN测量器中的典型内核功能,而是以特定形式的神经内核网络的形式,即神经内核网络的形式,即神经内核,来估计有条件平均治疗效应。根据Cox模型、随机生存森林和由一组具有共同参数的神经内核组成的控制与处理神经内核网络的结果,使用生存功能来估计有条件平均治疗效应。神经内核更加灵活,可以精确地模拟特性矢量矢量的复杂位置结构。各种数字模拟实验演示BENK,并将其与众所周知的T-Learner、S-Learner和X-learner等形式的神经内核内核控制与治疗结果功能的几种类型的控制和处理功能进行比较。根据Cox模型、随机生存森林和纳达拉亚-瓦尼内核的神经内核回归,在Gals/BAR-NK-NK-NKA中可操作中进行。