We consider multivariate splines and show that they have a random feature expansion as infinitely wide neural networks with one-hidden layer and a homogeneous activation function which is the power of the rectified linear unit. We show that the associated function space is a Sobolev space on a Euclidean ball, with an explicit bound on the norms of derivatives. This link provides a new random feature expansion for multivariate splines that allow efficient algorithms. This random feature expansion is numerically better behaved than usual random Fourier features, both in theory and practice. In particular, in dimension one, we compare the associated leverage scores to compare the two random expansions and show a better scaling for the neural network expansion.
翻译:我们考虑多变量样条, 并显示它们有随机特征扩展, 作为无限宽的神经网络, 具有一隐藏层和单一激活功能, 这是被校正的线性单元的力量。 我们显示相关功能空间是Euclidean球上的 Sobolev空间, 与衍生物的规范有明确的约束。 此链接为允许有效算法的多变量样条纹提供了一个新的随机特征扩展。 这种随机特征扩展在理论上和实践上都比通常随机的 Fourier 特征在数字上表现得更好。 特别是, 在层面一, 我们比较了相关杠杆分数, 以比较两个随机扩展, 并显示神经网络扩展的更好比例 。</s>