We construct finite-sample tests of goodness of fit for three different variants of the stochastic blockmodel for network data. Since all of the stochastic blockmodel variants are log-linear in form when block assignments are known, the tests for the \emph{latent} block model versions combine a block membership estimator with the algebraic statistics method for log-linear models. We describe Markov bases and marginal polytopes, and discuss how both facilitate the development of the algorithms and understanding of model behavior. The general testing methodology extends to any finite mixture of log-linear models on discrete data, and as such is the first application of algebraic statistics sampling for latent-variable models.
翻译:我们为三个不同的网络数据随机型块模型设计出适合三个不同变体的有限样本测试。由于所有随机型块模型变体都是已知区块分配时的对线形式,因此对 emph{latent} 区块模型版本的测试将区块成员估计值与日志-线性模型的对数统计方法结合起来。我们描述了Markov 基地和边际多面形,并讨论了如何促进算法的发展和对模型行为的理解。一般测试方法扩大到离散数据的对线型模型的任何有限混合物,因此也是对潜在可变模型进行代数统计抽样的第一个应用。