In the absence of Gaussianity assumptions without disturbing spatial continuity interpolating along the whole spatial surface for different time lags is challenging. The past researchers pay enough attention to Spatio-temporal interpolation ignoring the dynamic behavior of a spatial mean function, threshold distance, and direction of maintaining spatial continuity. Therefore, we employ hierarchical spatial clustering (HSC) to preserve local spatial stationarity. This research work introduces a hybrid extreme valued copula-based Spatio-temporal interpolation algorithm. Spatial dependence is captured by a blended extreme valued probability distribution (BEVD). Temporal dependency is modeled by the Bi-directional long short-time memory (BLSTM) at different temporal granularities, 1 month, 2 months, and 3 months. Spatio-temporal dependence is modeled by the Gumbel-Hougaard copula (GH). We apply the proposed Spatio-temporal interpolation approach to the air pollution data (Outdoor Particulate Matter (PM) concentration) of Delhi, collected from the website of the Central Pollution Control Board, India as a crucial circumstantial study. This article describes a probabilistic-recurrent neural networking algorithm for Spatio-temporal interpolation. This Spatio-temporal hybrid copula interpolation algorithm outperforms and is efficient enough to detect spatial trends and temporal influence. From the entire research, we notice that PM concentration in a year reaches a maximum, generally in November and December. The northern and central part of Del-hi is the most sensitive regarding air pollution.
翻译:在没有高山假设的情况下,没有扰乱整个空间表面空间连续性的跨度,在不同时间滞后的情况下,空间连续性假设是具有挑战性的。过去的研究人员足够关注空间中值功能、临界距离和保持空间连续性方向的动态行为,而忽略空间中值功能、临界距离和保持空间连续性方向的双向时空内存(BLSTM),因此,我们使用等级空间集群(HSC)来保护当地空间的静态性。这一研究工作引入了一种混合的极端有价值的以椰子为基础的空间时空间插算法。空间依赖性通过一种混合的极值概率分布(BEVD)来捕捉捉摸。时间依赖性依赖性由两个方向的短时空短期内存(BLSTM)来模拟,而忽略了空间中中值的动态内存(BLSTM)的动态内存(BLSTM)的动态内存(BLS)内存(BLS)内存内存内存内存内存内存内存内存内存(BL)内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存