Convolutional neural networks (CNN) have been successful in machine learning applications. Their success relies on their ability to consider space invariant local features. We consider the use of CNN to fit nuisance models in semiparametric estimation of the average causal effect of a treatment. In this setting, nuisance models are functions of pre-treatment covariates that need to be controlled for. In an application where we want to estimate the effect of early retirement on a health outcome, we propose to use CNN to control for time-structured covariates. Thus, CNN is used when fitting nuisance models explaining the treatment and the outcome. These fits are then combined into an augmented inverse probability weighting estimator yielding efficient and uniformly valid inference. Theoretically, we contribute by providing rates of convergence for CNN equipped with the rectified linear unit activation function and compare it to an existing result for feedforward neural networks. We also show when those rates guarantee uniformly valid inference. A Monte Carlo study is provided where the performance of the proposed estimator is evaluated and compared with other strategies. Finally, we give results on a study of the effect of early retirement on hospitalization using data covering the whole Swedish population.
翻译:进化神经网络(CNN)在机器学习应用方面是成功的。它们的成功取决于它们是否有能力考虑空间变化的地方特征。我们考虑使用CNN来将破坏模型用于对治疗平均因果关系的半参数估计。在这种环境下,骚扰模型是需要加以控制的预处理共变功能。在我们希望估计提前退休对健康结果的影响的应用程序中,我们提议使用CNN来控制时间结构的共变变量。因此,CNN用来在解释治疗和结果的干扰模型时使用。然后将CNN合用成一个增加的反概率加权模型,使估计结果产生有效和一致的有效推论。从理论上讲,我们通过提供配有修正线性单元激活功能的CNN的趋同率,并将其与供养神经网络的现有结果进行比较。我们还表明,当这些比率保证统一有效的推断时,我们提供蒙特卡洛研究,对拟议的估计结果进行了评估,并与其他战略进行比较。最后,我们用瑞典人的早期住院研究的结果,涉及整个人口的早期退休情况。