Understanding how subsets of items are chosen from offered sets is critical to assortment planning, wireless network planning, and many other applications. There are two seemingly unrelated subset choice models that capture dependencies between items: intuitive and interpretable random utility models; and tractable determinantal point processes (DPPs). This paper connects the two. First, all DPPs are shown to be random utility models. Next, a determinantal choice model that enjoys the best of both worlds is specified; the model is shown to subsume logistic regression when dependence is minimal, and MNL when dependence is maximally negative. This makes the model interpretable, while retaining the tractability of DPPs. A simulation study verifies that the model can learn a continuum of negative dependencies from data, and an applied study using original experimental data produces novel insights on wireless interference in LoRa networks.
翻译:理解从所提供的成套设备中选择项目子集的方式对于各类规划、无线网络规划和许多其他应用至关重要。 有两种似乎无关的子集选择模式可以捕捉各项目之间的依赖性:直观和可解释的随机实用模型;以及可移动的决定因素进程。本文将两者连接起来。首先,所有DPP都显示为随机实用模型。接下来,将指定一个享有两个世界最佳功能的决定因素选择模式;在依赖性极小时,该模型将包含后勤回归,在依赖性最大时则包含MNL。这使得该模型可以解释,同时保留DPP的可移动性。模拟研究证实该模型可以从数据中学习一系列负面依赖性,使用原始实验数据进行的应用研究将产生关于LoRa网络无线干扰的新洞察力。