We derive high-dimensional Gaussian comparison results for the standard $V$-fold cross-validated risk estimates. Our result combines a recent stability-based argument for the low-dimensional central limit theorem of cross-validation with the high-dimensional Gaussian comparison framework for sums of independent random variables. These results give new insights into the joint sampling distribution of cross-validated risks in the context of model comparison and tuning parameter selection, where the number of candidate models and tuning parameters can be larger than the fitting sample size. As a consequence, our results provide theoretical support for a recent methodological development that constructs model confidence sets using cross-validation.
翻译:我们为标准值为V$倍的交叉验证风险估计得出了高斯的高斯高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高高