Consistent in-focus input imagery is an essential precondition for machine vision systems to perceive the dynamic environment. A defocus blur severely degrades the performance of vision systems. To tackle this problem, we propose a deep-learning-based framework estimating the kernel scale and orientation of the defocus blur to adjust lens focus rapidly. Our pipeline utilizes 3D ConvNet for a variable number of input hypotheses to select the optimal slice from the input stack. We use random shuffle and Gumbel-softmax to improve network performance. We also propose to generate synthetic defocused images with various asymmetric coded apertures to facilitate training. Experiments are conducted to demonstrate the effectiveness of our framework.
翻译:连续的焦点输入图像是机器视觉系统感知动态环境的基本先决条件。 脱焦模糊会严重降低视觉系统的性能。 为了解决这个问题,我们提议了一个深学习框架,对脱焦的内核规模和方向进行估计,以便迅速调整镜头焦点。 我们的管道使用3D ConvNet进行数量不等的输入假设,从输入堆中选择最佳切片。 我们使用随机洗发机和 Gumbel- Softmax来改进网络性能。 我们还提议制作合成的、不集中的图像,使用各种不对称的编码孔径,以便利培训。 进行了实验,以展示我们框架的有效性。