In this paper, we consider the hypothesis testing of correlation between two $m$-uniform hypergraphs on $n$ unlabelled nodes. Under the null hypothesis, the hypergraphs are independent, while under the alternative hypothesis, the hyperdges have the same marginal distributions as in the null hypothesis but are correlated after some unknown node permutation. We focus on two scenarios: the hypergraphs are generated from the Gaussian-Wigner model and the dense Erd\"{o}s-R\'{e}nyi model. We derive the sharp information-theoretic testing threshold. Above the threshold, there exists a powerful test to distinguish the alternative hypothesis from the null hypothesis. Below the threshold, the alternative hypothesis and the null hypothesis are not distinguishable. The threshold involves $m$ and decreases as $m$ gets larger. This indicates testing correlation of hypergraphs ($m\geq3$) becomes easier than testing correlation of graphs ($m=2$)
翻译:在本文中, 我们考虑对两百万美元- 单式高射线对美元无标签节点的相关性进行假设测试。 在无效假设下, 高射线是独立的, 在替代假设下, 高射线的边际分布与无效假设相同, 但在一些未知的节点变换后是相互关联的。 我们关注两种假设: 高射- 维格模型和密集的 Erd\" { o}s- R\ { e} nyi 模型生成高射线。 我们从中得出尖锐的信息理论测试阈值。 在临界值之上, 存在一个能将替代假设与无效假设区分的强大测试。 在阈值下, 替代假设值和无效假设是不可区分的。 阈值涉及美元, 并且随着美元的增长而减少。 这表明高射线的测试相关性( m\ge3美元) 要比测试图形的对比( =2美元) 容易。