Geometric graphs form an important family of hidden structures behind data. In this paper, we develop an efficient and robust algorithm to infer a graph skeleton behind a point cloud data (PCD)embedded in high dimensional space. Previously, there has been much work to recover a hidden graph from a low-dimensional density field, or from a relatively clean high-dimensional PCD (in the sense that the input points are within a small bounded distance to a true hidden graph). Our proposed approach builds upon the recent line of work on using a persistence-guided discrete Morse (DM) theory based approach to reconstruct a geometric graph from a density field defined over a triangulation of low-dimensional Euclidean domain. In particular, we first give a very simple generalization of this DM-based algorithm from a density-function perspective to a general filtration perspective. On the theoretical front, we show that the output of the generalized algorithm contains a so-called lexicographic-optimal persistent cycle basis w.r.t the input filtration, justifying that the output is indeed meaningful. On the algorithmic front, this generalization allows us to use the idea of sparsified weighted Rips filtration (developed by Buchet etal) to develop a new graph reconstruction algorithm for noisy point cloud data (PCD) (which do not need to be embedded). The new algorithm is robust to background noise and non-uniform distribution of input points. We provide various experimental results to show the efficiency and effectiveness of our new graph reconstruction algorithm for PCDs.


翻译:几何图形构成了数据背后隐藏结构的重要组合。 在本文中, 我们开发了一个高效和强大的算法, 以在高维空间内嵌入的点云数据( PCD) 背后推断出一个图形骨架。 以前, 我们从低维密度字段或相对清洁的高维 PCD 角度( 意思是, 输入点位于与真实隐藏图之间的小距离以内) 中, 已经做了大量工作来回收隐藏的图形。 我们建议的方法基于最近的工作线, 即使用一种持续引导的离散摩斯( DM) 理论方法, 从一个由低维的 Euclidean 域三角定位定义的密度字段中重建一个几何图形。 特别是, 我们首先从一个低维密度密度的密度字段中或者从一个相对干净的高维度 PCD 算法中, 将这一基于 DMDM 值的算法简单化的图解析图进行简单化的概括化。 在理论上, 我们的通用算法输出包含一个所谓的新地算学- 持续周期基础 w.r. t 。 输入过滤, 证明输出的输出确实的输出是有意义的。 在亚化前, 我们的精确的算算法中, 将开始, 将使用新的算算算算算算算算法 将一个新的 将数据转换为新的算法, 向新的 以新的算算算算算法 以新的算法进行新的直为新的 的精确的算法,, 的算法 将 的算算法到新的算算法, 将使我们算算算算算算法 。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
7+阅读 · 2021年10月19日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
3+阅读 · 2017年12月1日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月17日
Arxiv
7+阅读 · 2021年10月19日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
3+阅读 · 2017年12月1日
Arxiv
4+阅读 · 2017年1月2日
Top
微信扫码咨询专知VIP会员