Graph neural networks (GNNs) provide a powerful and scalable solution for modeling continuous spatial data. However, in the absence of further context on the geometric structure of the data, they often rely on Euclidean distances to construct the input graphs. This assumption can be improbable in many real-world settings, where the spatial structure is more complex and explicitly non-Euclidean (e.g., road networks). In this paper, we propose PE-GNN, a new framework that incorporates spatial context and correlation explicitly into the models. Building on recent advances in geospatial auxiliary task learning and semantic spatial embeddings, our proposed method (1) learns a context-aware vector encoding of the geographic coordinates and (2) predicts spatial autocorrelation in the data in parallel with the main task. On spatial regression tasks, we show the effectiveness of our approach, improving performance over different state-of-the-art GNN approaches. We also test our approach for spatial interpolation, i.e., spatial regression without node features, a task that GNNs are currently not competitive at. We observe that our approach not only vastly improves over the GNN baselines, but can match Gaussian processes, the most commonly utilized method for spatial interpolation problems.


翻译:图像神经网络(GNNs)为连续空间数据的建模提供了一个强大且可扩缩的解决方案。然而,在数据几何结构缺乏更多背景的情况下,它们往往依赖欧洲轨道距离来构建输入图形。这一假设在许多现实世界环境中是不可能的,空间结构更为复杂,而且明确非欧洲轨道(例如公路网络)。在本文件中,我们提议PE-GNN(这是一个将空间背景和相关性明确纳入模型的新框架),在地理空间辅助任务学习和语义空间嵌入的最新进展的基础上,我们提议的方法(1) 往往依靠欧洲轨道距离来构建输入图形。这一假设在许多现实世界环境中是不可能的,空间结构更为复杂,而且明确不具有欧洲轨道特征。我们提出了一种将空间内插化方法,即空间内嵌化方法在无节点特征的情况下,空间内嵌入是当前GNNM系统不具有最大竞争力的任务。我们观察到,GNN方法在主要任务的同时,只能改善我们空间内位方法的相互竞争性。

0
下载
关闭预览

相关内容

【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
40+阅读 · 2020年9月27日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年2月19日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
8+阅读 · 2021年2月19日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员