Multi-view clustering has wide applications in many image processing scenarios. In these scenarios, original image data often contain missing instances and noises, which is ignored by most multi-view clustering methods. However, missing instances may make these methods difficult to use directly and noises will lead to unreliable clustering results. In this paper, we propose a novel Auto-weighted Noisy and Incomplete Multi-view Clustering framework (ANIMC) via a soft auto-weighted strategy and a doubly soft regular regression model. Firstly, by designing adaptive semi-regularized nonnegative matrix factorization (adaptive semi-RNMF), the soft auto-weighted strategy assigns a proper weight to each view and adds a soft boundary to balance the influence of noises and incompleteness. Secondly, by proposing{\theta}-norm, the doubly soft regularized regression model adjusts the sparsity of our model by choosing different{\theta}. Compared with existing methods, ANIMC has three unique advantages: 1) it is a soft algorithm to adjust our framework in different scenarios, thereby improving its generalization ability; 2) it automatically learns a proper weight for each view, thereby reducing the influence of noises; 3) it performs doubly soft regularized regression that aligns the same instances in different views, thereby decreasing the impact of missing instances. Extensive experimental results demonstrate its superior advantages over other state-of-the-art methods.


翻译:多视图群集在许多图像处理情景中具有广泛应用性。 在这些情景中,原始图像数据往往包含缺失的情况和噪音,而大多数多视图群集方法都忽略了这些缺失的情况和噪音。 然而,缺失的情况可能使这些方法难以直接使用,噪音会导致群集结果不可靠。 在本文中,我们提出一个新的“自动加权的杂音和不完整多视图群集框架 ” ( AMINC), 通过软自动加权战略和加倍的软性软性常规回归模式来调整我们模型的宽度。 与现有方法相比, ANNIC有三个独特的优势:1) 软性半常规化的非负式矩阵集成( 适应性半RNMMF), 软性自动自动加权战略给每个视图都赋予适当的权重, 增加软性边界, 平衡噪音和不完全性。 第二, 通过提出“theta”-noral 常规回归模型, 通过选择不同的 来调整我们模型的宽度 。 与现有方法相比, AMC 具有三个独特的优势:1), 它是一种软性算法来调整我们框架的不同情景,, 从而改进其一般化能力,从而改进其一般化的超度 。 2) 的平级级回归度,从而降低了对每个图像的压压压压。

0
下载
关闭预览

相关内容

机器学习的可解释性
专知会员服务
69+阅读 · 2020年12月18日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
80+阅读 · 2020年6月11日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员