A trace ratio optimization problem over the Stiefel manifold is investigated from the perspectives of both theory and numerical computations. At least three special cases of the problem have arisen from Fisher linear discriminant analysis, canonical correlation analysis, and unbalanced Procrustes problem, respectively. Necessary conditions in the form of nonlinear eigenvalue problem with eigenvector dependency are established and a numerical method based on the self-consistent field (SCF) iteration is designed and proved to be always convergent. As an application to multi-view subspace learning, a new framework and its instantiated concrete models are proposed and demonstrated on real world data sets. Numerical results show that the efficiency of the proposed numerical methods and effectiveness of the new multi-view subspace learning models.


翻译:Stiefel 元件的微量比例优化问题从理论和数字计算的角度都得到了调查,至少三个问题的特殊案例分别来自渔业家线性对流分析、气相相关分析以及不平衡的蛋白质问题,以树皮依赖性的非线性亚值问题的形式建立了必要的条件,并设计了一个基于自相容域迭代法的数字方法,并证明它始终是趋同的。作为多视图子空间学习的应用,提出了一个新的框架及其即时具体模型,并在真实的世界数据集中展示。数字结果显示,拟议的数字方法的效率和新的多视图子空间学习模型的有效性。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
1+阅读 · 2021年3月9日
Arxiv
13+阅读 · 2020年8月3日
Arxiv
14+阅读 · 2019年9月11日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关VIP内容
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
1+阅读 · 2021年3月9日
Arxiv
13+阅读 · 2020年8月3日
Arxiv
14+阅读 · 2019年9月11日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
15+阅读 · 2018年6月23日
Top
微信扫码咨询专知VIP会员