State-of-the-art solutions for Shape-from-Polarization (SfP) suffer from a speed-resolution tradeoff: they either sacrifice the number of polarization angles measured or necessitate lengthy acquisition times due to framerate constraints, thus compromising either accuracy or latency. We tackle this tradeoff using event cameras. Event cameras operate at microseconds resolution with negligible motion blur, and output a continuous stream of events that precisely measures how light changes over time asynchronously. We propose a setup that consists of a linear polarizer rotating at high-speeds in front of an event camera. Our method uses the continuous event stream caused by the rotation to reconstruct relative intensities at multiple polarizer angles. Experiments demonstrate that our method outperforms physics-based baselines using frames, reducing the MAE by 25% in synthetic and real-world dataset. In the real world, we observe, however, that the challenging conditions (i.e., when few events are generated) harm the performance of physics-based solutions. To overcome this, we propose a learning-based approach that learns to estimate surface normals even at low event-rates, improving the physics-based approach by 52% on the real world dataset. The proposed system achieves an acquisition speed equivalent to 50 fps (>twice the framerate of the commercial polarization sensor) while retaining the spatial resolution of 1MP. Our evaluation is based on the first large-scale dataset for event-based SfP


翻译:现有的极化形状恢复方法存在速度-分辨率的权衡问题:它们要么牺牲测量的极化角度数量,要么由于帧率限制需要漫长的采集时间,从而影响精度或响应时间。本研究使用事件相机来解决这个问题。事件相机具有微秒级分辨率和几乎无运动模糊的特点,并可异步输出精确测量光线随时间变化的连续事件流。我们提出了一种方案,包括将一根线性偏振片放在一个高速旋转的架子上,旋转时在事件相机前方。我们的方法利用旋转引起的连续事件流,重建出多个极化角度下的相对强度。实验表明,我们的方法在合成和真实世界数据集上比基于物理原理的基线方法表现更好,将MAE降低了25%。在现实世界中,我们观察到具有挑战性的条件(即产生少量事件流的情况)会对基于物理原理的解决方案的性能造成影响。为了解决这个问题,我们提出了一种基于学习的方法,即使在低事件率下也可以学习估计表面法向量,提高了基于物理原理的方法在真实世界数据集上的表现 by 52%。我们提出的系统达到了每秒50帧的采样速度(两倍于商业极化传感器的帧率),同时保持了1MP的空间分辨率。我们的评估基于事件极化形状恢复的第一个大规模数据集。

0
下载
关闭预览

相关内容

VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
超分辨率相关资源大列表
极市平台
24+阅读 · 2019年5月11日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关VIP内容
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员