We study the benefits of using a large public neuroimaging database composed of fMRI statistic maps, in a self-taught learning framework, for improving brain decoding on new tasks. First, we leverage the NeuroVault database to train, on a selection of relevant statistic maps, a convolutional autoencoder to reconstruct these maps. Then, we use this trained encoder to initialize a supervised convolutional neural network to classify tasks or cognitive processes of unseen statistic maps from large collections of the NeuroVault database. We show that such a self-taught learning process always improves the performance of the classifiers but the magnitude of the benefits strongly depends on the number of data available both for pre-training and finetuning the models and on the complexity of the targeted downstream task.
翻译:我们研究使用由FMRI统计图组成的大型公共神经成像数据库的好处,该数据库由FMRI统计图组成,在自学框架内改进大脑在新任务上的解码。首先,我们利用NeuroVault数据库,在相关统计图的选择上培训一个革命性自动编码器来重建这些地图。然后,我们利用这个经过培训的编码器,启动一个受监督的共生神经网络,从NeuroVault数据库的大量收藏中,对无形统计图的任务或认知过程进行分类。我们表明,这种自学学习过程总是提高分类员的性能,但惠益的大小在很大程度上取决于用于培训前和微调模型的数据数量以及目标下游任务的复杂性。