We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0, for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed {\sf HDG-P0} schemes, which hasn't appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix-Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings.
翻译:我们用数字集成( quadture) 来展示最低顺序混合不连续 Galerkin 计划, 称为 HDG- P0, 用于反应扩散方程式和通用 Stokes 方程式, 用于在二和三维二和三维二和三维二对称中符合模拟模擬。 在这里, 我们用最低顺序表示, 全球HDG 自由面度( DOFs) 的( 交错) 有限元素空间是网状骨架上的片断常数空间。 一个不连续的片断线性线性空间空间用于接近本地原始未知。 我们给拟议的HDG- P0 方程式( ssf HDG- P0}) 和通用的SDG- 平面平面平面平面平面系统提供最佳前置误差分析。 我们的硬面 HDG- P0 平面系统( 略地对等值) 将硬面的硬面 HDG- 平面平面系统( 直径直径直径直径对等) 直径直径直径直径直径直径直径直径直径直径直径直径直径直径对等( 直径对等。