The textbook adversary bound for function evaluation states that to evaluate a function $f\colon D\to C$ with success probability $\frac{1}{2}+\delta$ in the quantum query model, one needs at least $\left( 2\delta -\sqrt{1-4\delta^2} \right) Adv(f)$ queries, where $Adv(f)$ is the optimal value of a certain optimization problem. For $\delta \ll 1$, this only allows for a bound of $\Theta\left(\delta^2 Adv(f)\right)$ even after a repetition-and-majority-voting argument. In contrast, the polynomial method can sometimes prove a bound that doesn't converge to $0$ as $\delta \to 0$. We improve the $\delta$-dependent prefactor and achieve a bound of $2\delta Adv(f)$. The proof idea is to "turn the output condition into an input condition": From an algorithm that transforms perfectly input-independent initial to imperfectly distinguishable final states, we construct one that transforms imperfectly input-independent initial to perfectly distinguishable final states in the same number of queries by projecting onto the "correct" final subspaces and uncomputing. The resulting $\delta$-dependent condition on initial Gram matrices, compared to the original algorithm's condition on final Gram matrices, allows deriving the tightened prefactor.
翻译:在量子查询模型下评估具有成功概率$\frac{1}{2}+\delta$的函数$f\colon D\to C$的教科书对手界限规定,需要至少$\left(2\delta-\sqrt{1-4\delta^2}\right)Adv(f)$个查询,其中$Adv(f)$是某个最优化问题的最优解。对于$\delta \ll 1$,即使进行重复和多数表决,也只能得到$\Theta\left(\delta^2 Adv(f)\right)$的界限。相比之下,多项式方法有时可以证明不会在$\delta \to 0$时收敛于$0$的界限。我们改进了$\delta$的相关前置因子,并实现了$2\delta Adv(f)$的界限。证明思路是"将输出条件转换为输入条件":从一种将初始状态转换为不完美可区分的终态的算法出发,我们构造了一种在相同数量的查询下,将初始状态转换为完全可区分的终态的算法,通过投影到"正确"的最终子空间并取消计算。与原算法在最终Gram矩阵上的条件相比,初态Gram矩阵上的$\delta$相关条件可以导出紧缩的前置因子。