Some self-supervised cross-modal learning approaches have recently demonstrated the potential of image signals for enhancing point cloud representation. However, it remains a question on how to directly model cross-modal local and global correspondences in a self-supervised fashion. To solve it, we proposed PointCMC, a novel cross-modal method to model multi-scale correspondences across modalities for self-supervised point cloud representation learning. In particular, PointCMC is composed of: (1) a local-to-local (L2L) module that learns local correspondences through optimized cross-modal local geometric features, (2) a local-to-global (L2G) module that aims to learn the correspondences between local and global features across modalities via local-global discrimination, and (3) a global-to-global (G2G) module, which leverages auxiliary global contrastive loss between the point cloud and image to learn high-level semantic correspondences. Extensive experiment results show that our approach outperforms existing state-of-the-art methods in various downstream tasks such as 3D object classification and segmentation. Code will be made publicly available upon acceptance.


翻译:最近,一些自我监督的跨模式学习方法展示了图像信号对于提高点云代表度的潜力,然而,这仍然是一个如何直接以自我监督的方式模拟跨模式的地方和全球通信的问题。为了解决这个问题,我们提议了PointCMC,这是一个全新的跨模式的跨模式方法,用以模拟跨模式的多模式通信,进行自我监督的点云代表度学习。特别是,PointCMC由以下几个方面组成:(1) 地方到地方(L2L)模块,通过优化的跨模式地方几何特征学习地方通信;(2) 地方到全球(L2G)模块,目的是通过地方全球歧视学习不同模式的地方和全球特征之间的通信;(3) 全球(G2G)模块,利用点云和图像之间的辅助性全球对比性损失来学习高层次的语义通信。广泛的实验结果表明,我们的方法在诸如3D物体分类和分区等各种下游任务中超越了现有的状态方法。 守则将在公众接受后公布。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月23日
Arxiv
18+阅读 · 2021年6月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员