We introduce a practical pipeline that interactively encodes multimodal human demonstrations for robot teaching. This pipeline is designed as an input system for a framework called Learning-from-Observation (LfO), which aims to program household robots with manipulative tasks through few-shots human demonstration without coding. While most previous LfO systems run with visual demonstration, recent research on robot teaching has shown the effectiveness of verbal instruction in making recognition robust and teaching interactive. To the best of our knowledge, however, no LfO system has yet been proposed that utilizes both verbal instruction and interaction, namely \textit{multimodal LfO}. This paper proposes the interactive task encoding system (ITES) as an input pipeline for multimodal LfO. ITES assumes that the user teaches step-by-step, pausing hand movements in order to match the granularity of human instructions with the granularity of robot execution. ITES recognizes tasks based on step-by-step verbal instructions that accompany the hand movements. Additionally, the recognition is made robust through interactions with the user. We test ITES on a real robot and show that the user can successfully teach multiple operations through multimodal demonstrations. The results suggest the usefulness of ITES for multimodal LfO. The source code is available at https://github.com/microsoft/symbolic-robot-teaching-interface.


翻译:我们引入了一个实用的管道,以互动方式将人类的多式联运演示编码为机器人教学。这个管道设计成一个名为“从观察中学习”(LfO)的框架的输入系统,其目的是通过不做编码的几发人演示,对操控任务的家庭机器人进行编程。虽然大多数先前的LfO系统都是通过视觉演示运行的,但最近对机器人教学的研究表明,口头教学在使认可强有力和教学互动方面是有效的。然而,据我们所知,还没有提出利用口头教学和互动(即\textit{Multimodal LfO})的LfO系统。本文提出交互式任务编码系统(ITS),作为多式联运LfO的输入管道。ITES假设,用户教分步教,用手动,以便使人类指令的颗粒性与机器人执行的颗粒性相匹配。ITES承认基于逐步口头指令的任务,伴随手动。此外,通过与用户的互动(即TES-Mont-modal-modal-tologyal)的识别,我们测试了IES-tomal-modial-modistrations 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员