Multi-view projection methods have demonstrated promising performance on 3D understanding tasks like 3D classification and segmentation. However, it remains unclear how to combine such multi-view methods with the widely available 3D point clouds. Previous methods use unlearned heuristics to combine features at the point level. To this end, we introduce the concept of the multi-view point cloud (Voint cloud), representing each 3D point as a set of features extracted from several view-points. This novel 3D Voint cloud representation combines the compactness of 3D point cloud representation with the natural view-awareness of multi-view representation. Naturally, we can equip this new representation with convolutional and pooling operations. We deploy a Voint neural network (VointNet) to learn representations in the Voint space. Our novel representation achieves \sota performance on 3D classification, shape retrieval, and robust 3D part segmentation on standard benchmarks ( ScanObjectNN, ShapeNet Core55, and ShapeNet Parts).
翻译:多视角预测方法显示,在3D分类和分解等3D理解任务方面表现良好,但是,仍然不清楚如何将这种多视角方法与广泛存在的3D点云结合起来。以前的方法使用未学的超光速来结合点层的特征。为此,我们引入了多视图点云(Voint云)的概念,代表每个3D点,作为从几个视图点提取的一组特征。这个新奇的 3D Voint 云代表将3D点云代表的紧凑性与多视图代表的自然视觉意识结合起来。自然,我们可以用连动和集合操作来装备这种新的表达方式。我们部署了一个Voint空间的动态神经网络(VointNet)来学习表达方式。我们的新表达方式在3D分类、形状检索和标准基准3D部分(ScanObjectN、ShapeNet Core55和ShapeNet Parts)上实现了3D部分的动态表现。