We propose an interactive approach for 3D instance segmentation, where users can iteratively collaborate with a deep learning model to segment objects in a 3D point cloud directly. Current methods for 3D instance segmentation are generally trained in a fully-supervised fashion, which requires large amounts of costly training labels, and does not generalize well to classes unseen during training. Few works have attempted to obtain 3D segmentation masks using human interactions. Existing methods rely on user feedback in the 2D image domain. As a consequence, users are required to constantly switch between 2D images and 3D representations, and custom architectures are employed to combine multiple input modalities. Therefore, integration with existing standard 3D models is not straightforward. The core idea of this work is to enable users to interact directly with 3D point clouds by clicking on desired 3D objects of interest~(or their background) to interactively segment the scene in an open-world setting. Specifically, our method does not require training data from any target domain, and can adapt to new environments where no appropriate training sets are available. Our system continuously adjusts the object segmentation based on the user feedback and achieves accurate dense 3D segmentation masks with minimal human effort (few clicks per object). Besides its potential for efficient labeling of large-scale and varied 3D datasets, our approach, where the user directly interacts with the 3D environment, enables new applications in AR/VR and human-robot interaction.


翻译:我们建议了3D例分解的交互式方法, 用户可以在3D点云中反复地与深学习模式合作, 将对象分解成3D例分解为直接的3D分解。 目前, 3D例分解方法一般都是在完全监督的情况下培训的, 这需要大量昂贵的培训标签, 并且没有在培训期间对课堂进行全面推广。 很少有作品试图利用人类互动获取 3D 分解面具。 现有方法依靠 2D 图像域的用户反馈。 因此, 用户需要不断转换 2D 图像和 3D 表示方式, 并使用定制结构来将多个输入方式结合起来。 因此, 与现有的标准 3D 分解模式的整合并非直截了当。 这项工作的核心理念是让用户能够直接与 3D 点云进行互动, 点击人们想要的 3D 对象 ; (或他们的背景) 在开放的环境下, 我们的方法不需要来自任何目标域的培训数据, 并且可以适应新的环境。 我们的系统不断调整基于用户 AR 3D 反馈的物体分解, 并实现精确的 3D 3D 快速的用户分解方式,, 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员