Though a number of point cloud learning methods have been proposed to handle unordered points, most of them are supervised and require labels for training. By contrast, unsupervised learning of point cloud data has received much less attention to date. In this paper, we propose a simple yet effective approach for unsupervised point cloud learning. In particular, we identify a very useful transformation which generates a good contrastive version of an original point cloud. They make up a pair. After going through a shared encoder and a shared head network, the consistency between the output representations are maximized with introducing two variants of contrastive losses to respectively facilitate downstream classification and segmentation. To demonstrate the efficacy of our method, we conduct experiments on three downstream tasks which are 3D object classification (on ModelNet40 and ModelNet10), shape part segmentation (on ShapeNet Part dataset) as well as scene segmentation (on S3DIS). Comprehensive results show that our unsupervised contrastive representation learning enables impressive outcomes in object classification and semantic segmentation. It generally outperforms current unsupervised methods, and even achieves comparable performance to supervised methods. Our source codes will be made publicly available.


翻译:虽然提出了一些点云学习方法来处理未排序的点,但大多数云是受到监督的,需要标签来进行培训。相比之下,对点云数据的未经监督的学习迄今为止受到的关注要少得多。在本文件中,我们提出了一种简单而有效的方法来进行未监管的点云学习。特别是,我们确定了一种非常有用的转换方法,它产生了原始点云的优异版本。它们组成了对等。经过一个共同的编码器和一个共享的主网络,输出表达方式的一致性最大化了,引入了两个对比性损失的变种,分别为下游分类和分割提供了便利。为了展示我们的方法的有效性,我们在三种下游任务上进行了实验,即3D对象分类(模型Net40和模型Net10),形状部分分割(在ShapeNet Part 数据集上)以及场段分割(在 S3DIS 上) 。全面的结果显示,我们未超超度的对比性表述方法有助于在对象分类和语义分解中取得令人印象深刻的结果。我们源码将公开制作成像。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员