We describe PromptBoosting, a query-efficient procedure for building a text classifier from a neural language model (LM) without access to the LM's parameters, gradients, or hidden representations. This form of "black-box" classifier training has become increasingly important as the cost of training and inference in large-scale LMs grows. But existing black-box LM classifier learning approaches are themselves computationally inefficient, typically specializing LMs to the target task by searching in a large space of (discrete or continuous) prompts using zeroth-order optimization methods. Instead of directly optimizing in prompt space, PromptBoosting obtains a small pool of prompts via a gradient-free approach and then constructs a large pool of weak learners by pairing these prompts with different elements of the LM's output distribution. These weak learners are then ensembled using the AdaBoost algorithm. The entire learning process requires only a small number of forward passes and no backward pass. Experiments show that PromptBoosting achieves state-of-the-art performance in multiple black-box few-shot classification tasks, and matches or outperforms full fine-tuning in both few-shot and standard learning paradigms, while training 10x faster than existing black-box methods.
翻译:我们描述PearchBoosting, 这是一种从神经语言模型(LM)中建立文本分类器的查询效率高的程序, 没有访问 LM 参数、 梯度或隐藏的演示。 这种“ 黑盒” 分类器培训形式随着大型 LM 中培训和推断成本的增加而变得日益重要。 但是, 现有的黑盒 LM 分类器学习方法本身计算效率低下, 典型的专业化 LMs, 使用零级优化方法搜索大量( 分解或连续) 的提示器, 以达到目标任务。 Expressboosting 并非直接优化快速空间, 而是通过无梯度方法获得少量提示器, 然后通过将这些提示器与LM 输出分布的不同元素配对, 从而建立大批弱小的学习者群体。 这些弱小的学习者随后会使用AdaBoost 算法混在一起。 整个学习过程只需要少量的远端通道和无后退通道。 实验显示, Expressboosting 在多个黑盒低标准、 和十式的培训中, 匹配或全套方法在不同的黑箱、 10 格式上都实现了。