项目名称: 重掺杂半导体纳米晶等离子体光电化学生物传感研究
项目编号: No.21505117
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 李静
作者单位: 盐城工学院
项目金额: 24万元
中文摘要: 等离子体能量转移集增强光子吸收、促进载流子对分离、延长载流子寿命为一体,可有效提高光电化学检测灵敏度。鉴于贵金属等离子体具有较大能量损失,本项目拟开展重掺杂半导体纳米晶等离子体光电化学传感新体系的研究,讨论掺杂比例、纳米晶尺寸/形貌、操作条件等对其局域表面等离子体共振波长和光、电性能的影响;深入探讨其激子、激元和光子之间的能量匹配关系;进而探讨多激子产生效应和局域表面等离子体共振效应对其光电性能的影响及其相互联系,揭示其增强光电化学传感的新原理和新机制,以功能核酸作为分子识别元件并结合生物放大技术,实现超灵敏、免标记和快速检测。本工作创造性地集成重掺杂半导体纳米晶局域表面等离子体共振效应、多激子产生效应和光电化学传感的优点,将深入探讨新型半导体等离子体增强光电化学传感的新机制,拓展半导体等离子体的应用范围,为食品安全预警机制的建立提供新平台,并促进光电化学分析领域的发展。
中文关键词: 光电化学;生物传感器;重掺杂半导体纳米晶;局域表面等离子体共振;功能核酸
英文摘要: Taking advantages of the antennas of light, enhancement of carriers separation, prolongation of carrier lifetime, plasmonic energy transfer can greatly improve the detection sensitivity of photoelectrochemical (PEC) sensing. In light of high energy loss in noble metal plasmons, instead, a novel plasmonic PEC sensing system in heavily-doped semiconductor nanocrystals will be discussed here. Firstly, the effects of doping ratios, nanocrystal morphology/size, and operating parameters on the localized surface plasmon resonance (LSPR), light/electric performances of nanocrystal will be discussed. Secondly, the energy-matching relationship between the plasmons or excitons in these nanocrystals and the incident photons will be deeply investigated. Thirdly, the effects of multiple exciton generation (MEG) and LSPR on the PEC performance of these nanocrystals and also their mutual interaction will be further explored. Finally, the influencing mechanisms of MEG and LSPR effects of these nanocrystals on the enhancement of PEC sensing will be uncovered in order to build a new theory and a new system for ultrasensitive, label-free, and rapid detection based on the molecular recognition element of functional nucleic acid combined with biological amplification technology. This project creatively integrates the MEG and LSPR effects of heavily-doped semiconductor nanocrystals together with PEC sensing advantages, and deeply investigates the enhancement mechanism of novel semiconductor plasmons on PEC sensing. It will extend the application field of plasmonic semiconductors to construct a new platform for food safety warning and also promote the development of PEC sensing.
英文关键词: Photoelectrochemistry;Biosensor;Heavily-doped semiconductor Nanocrystal;Localized surface plasmon resonance;Functional nucleic acid