Existing neural methods have shown great potentials towards generating informative text from structured tabular data as well as maintaining high content fidelity. However, few of them shed light on generating personalized expressions, which often requires well-aligned persona-table-text datasets that are difficult to obtain. To overcome these obstacles, we explore personalized table-to-text generation under a zero-shot setting, by assuming no well-aligned persona-table-text triples are required during training. To this end, we firstly collect a set of unpaired persona information and then propose a semi-supervised approach with contrastive persona distillation (S2P-CPD) to generate personalized context. Specifically, tabular data and persona information are firstly represented as latent variables separately. Then, we devise a latent space fusion technique to distill persona information into the table representation. Besides, a contrastive-based discriminator is employed to guarantee the style consistency between the generated context and its corresponding persona. Experimental results on two benchmarks demonstrate S2P-CPD's ability on keeping both content fidelity and personalized expressions.


翻译:现有的神经方法在生成结构化表格数据的信息性文本方面表现出巨大潜力,同时保持了高内容逼真度。然而,其中很少有方法着眼于生成个性化表达,这通常需要难以获取的良好对齐的人物-表格-文本数据集。为了克服这些障碍,我们探索了在零样例情况下的个性化表格到文本生成,这意味着训练期间不需要良好对齐的人物-表格-文本三元组。为此,我们首先收集了一组未配对的人物信息,然后提出了一种半监督方法,使用对比个性蒸馏来生成个性化上下文。具体而言,表格数据和人物信息首先分别表示为潜在变量。然后,我们设计了一种潜在空间融合技术,将人物信息蒸馏到表格表示中。此外,我们使用基于对比的判别器来确保生成的上下文与其对应的人物之间的风格一致性。在两个基准测试中的实验结果表明,S2P-CPD在保持内容逼真度和个性化表达方面具有能力。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年10月13日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
18+阅读 · 2020年10月13日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员