项目名称: 面向微博的地理兴趣点抽取及其用户行为意图分析研究

项目编号: No.61502344

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 计算机科学学科

项目作者: 李晨亮

作者单位: 武汉大学

项目金额: 21万元

中文摘要: 微博实时的信息分享使得基于微博内容开展用户位置研究变成一个重要研究内容,这类技术的发展对个性化地理服务、广告营销和智慧城市等领域提供了科学技术层面的支持。现有研究工作主要依赖于用户的主动地理信息分享,由于其位置分析精细度较低并且用户行为意图信息不明,这些技术很难支撑上述应用。本课题旨在通过分析用户微博内容,依次研究微博地理兴趣点(POI)抽取算法, POI地理位置推断算法和用户关于POI的行为意图分析算法,实现细粒度地获知用户的地理位置、活动计划和内容的目标。项目将采用文本挖掘与自然语言处理相关技术理论,重点研究:(1)POI词条的语义语境特征的抽取、转换和表征方法;(2)基于空间行为模式与空间主题分布的POI位置推断方法;(3)用户关于POI的时间趋势特征抽取与度量方法。本项研究对于推动文本处理技术的进一步发展以及满足应用领域对用户地理信息分析的需求,具有重要的科学意义和应用价值。

中文关键词: Web信息抽取

英文摘要: Given the real-time information sharing in microblogs, user location identification based on the content of microblogs has become an important research area. This class of techniques provides scientific support for personalized location services, advertisement and smart city, and so on. Existing studies mainly reply on the explicit location sharing of the users, which cannot provides fine-grained location estimation, or the extracted user behavior intent is unknown for the above applications. In this project, based on the content of microblogs, our endeavor is devoted to the development of point-of-interest (POI) extraction, POI location identification and POI-specific user behavior intent analysis, aiming at inferring user’s location, activity schedule and content in a fine-grained scale. Following the text mining and natural language processing methodology, we intensively address the following aspects: (1) the extraction, transformation and representation of the semantic and contextual features regarding POI; (2) POI location estimation approach based on both the spatial behavior pattern and spatial topic distribution; (3) the extraction and measurement of the temporal awareness features regarding POI. This project will make significant contribution to the development of text processing techniques and fulfill the requirements on the user geographical data analysis from industry.

英文关键词: Web Information Extraction

成为VIP会员查看完整内容
0

相关内容

WSDM'22「京东」个性化会话推荐:异构全局图神经网络
专知会员服务
22+阅读 · 2022年1月7日
专知会员服务
56+阅读 · 2021年8月12日
个性化广告推荐系统及其应用研究
专知会员服务
94+阅读 · 2021年2月27日
专知会员服务
27+阅读 · 2021年2月17日
专知会员服务
51+阅读 · 2020年12月19日
专知会员服务
43+阅读 · 2020年12月8日
基于旅游知识图谱的可解释景点推荐
专知会员服务
90+阅读 · 2020年9月4日
多视图多行为对比学习推荐系统
机器学习与推荐算法
4+阅读 · 2022年3月23日
你会信任哪些平台的评分评价?
ZEALER订阅号
0+阅读 · 2022年3月20日
CIKM'21 | 自监督图神经网络在社会化推荐中的应用
图与推荐
3+阅读 · 2021年11月16日
基于知识图谱的推荐系统总结
机器学习与推荐算法
4+阅读 · 2021年11月11日
用户分析体系,该如何搭建
人人都是产品经理
0+阅读 · 2021年10月20日
事理图谱:事件演化的规律和模式
哈工大SCIR
34+阅读 · 2019年7月19日
【知识图谱】基于知识图谱的用户画像技术
产业智能官
102+阅读 · 2019年1月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
Arxiv
29+阅读 · 2020年3月16日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
10+阅读 · 2018年4月19日
小贴士
相关主题
相关VIP内容
WSDM'22「京东」个性化会话推荐:异构全局图神经网络
专知会员服务
22+阅读 · 2022年1月7日
专知会员服务
56+阅读 · 2021年8月12日
个性化广告推荐系统及其应用研究
专知会员服务
94+阅读 · 2021年2月27日
专知会员服务
27+阅读 · 2021年2月17日
专知会员服务
51+阅读 · 2020年12月19日
专知会员服务
43+阅读 · 2020年12月8日
基于旅游知识图谱的可解释景点推荐
专知会员服务
90+阅读 · 2020年9月4日
相关资讯
多视图多行为对比学习推荐系统
机器学习与推荐算法
4+阅读 · 2022年3月23日
你会信任哪些平台的评分评价?
ZEALER订阅号
0+阅读 · 2022年3月20日
CIKM'21 | 自监督图神经网络在社会化推荐中的应用
图与推荐
3+阅读 · 2021年11月16日
基于知识图谱的推荐系统总结
机器学习与推荐算法
4+阅读 · 2021年11月11日
用户分析体系,该如何搭建
人人都是产品经理
0+阅读 · 2021年10月20日
事理图谱:事件演化的规律和模式
哈工大SCIR
34+阅读 · 2019年7月19日
【知识图谱】基于知识图谱的用户画像技术
产业智能官
102+阅读 · 2019年1月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员