Safety filters based on Control Barrier Functions (CBFs) have emerged as a practical tool for the safety-critical control of autonomous systems. These approaches encode safety through a value function and enforce safety by imposing a constraint on the time derivative of this value function. However, synthesizing a valid CBF that is not overly conservative in the presence of input constraints is a notorious challenge. In this work, we propose refining a candidate CBF using formal verification methods to obtain a valid CBF. In particular, we update an expert-synthesized or backup CBF using dynamic programming (DP) based reachability analysis. Our framework, refineCBF, guarantees that with every DP iteration the obtained CBF is provably at least as safe as the prior iteration and converges to a valid CBF. Therefore, refineCBF can be used in-the-loop for robotic systems. We demonstrate the practicality of our method to enhance safety and/or reduce conservativeness on a range of nonlinear control-affine systems using various CBF synthesis techniques in simulation.
翻译:基于控制障碍功能(CBFs)的安全过滤器已成为自主系统安全关键控制的一个实用工具,这些方法通过一种价值功能编码安全,并通过对这一价值功能的时间衍生物施加限制来强制执行安全;然而,在投入限制的情况下,将一个不过分保守的有效的CBF综合起来是一项臭名昭著的挑战;在这项工作中,我们提议利用正式核查方法改进一个候选的CBF,以获得一个有效的CBF;特别是,我们利用动态程序(DP)的可达性分析,更新一个专家组合规模或备份的CBF。我们的框架,SpressCBF, 保证获得的CBF的每个驱动器至少与先前的重复和与一个有效的CBF一致一样安全。因此,改进CBFF可以在机器人系统的环中使用。我们用各种CFF的合成技术来提高一系列非线性控制药物系统的安全和/或减少其保守性的方法是可行的。