Existing approaches to system identification (estimating the physical parameters of an object) from videos assume known object geometries. This precludes their applicability in a vast majority of scenes where object geometries are complex or unknown. In this work, we aim to identify parameters characterizing a physical system from a set of multi-view videos without any assumption on object geometry or topology. To this end, we propose "Physics Augmented Continuum Neural Radiance Fields" (PAC-NeRF), to estimate both the unknown geometry and physical parameters of highly dynamic objects from multi-view videos. We design PAC-NeRF to only ever produce physically plausible states by enforcing the neural radiance field to follow the conservation laws of continuum mechanics. For this, we design a hybrid Eulerian-Lagrangian representation of the neural radiance field, i.e., we use the Eulerian grid representation for NeRF density and color fields, while advecting the neural radiance fields via Lagrangian particles. This hybrid Eulerian-Lagrangian representation seamlessly blends efficient neural rendering with the material point method (MPM) for robust differentiable physics simulation. We validate the effectiveness of our proposed framework on geometry and physical parameter estimation over a vast range of materials, including elastic bodies, plasticine, sand, Newtonian and non-Newtonian fluids, and demonstrate significant performance gain on most tasks.
翻译:视频中现有的系统识别方法( 估计物体物理参数) 假设已知物体的物理参数。 这排除了这些参数在绝大多数物体地形复杂或未知的场景中的可应用性。 在这项工作中, 我们的目标是从一组多视图视频中确定物理系统特征的参数, 而没有物体几何或地形学方面的假设。 为此, 我们提议“ 物理增强的连续大陆神经辐射场( PAC- NERF) ”, 以估计多视图视频中高度动态物体的未知几何和物理参数。 我们设计 PAC- NERF 时, 只能通过执行神经光亮场, 以遵循连续机械学的保存法, 来产生体貌合理的状态。 为此, 我们设计了一个混合的 Eulerian- Langian- Local Radiance Feeldations 字段( PAC- NAC- NERF), 同时通过 Lagrangeian 粒子支持神经光谱场。 这种混合的 Neural- Laxionian 代表- reportal reportal reportal reportal restiumal sultivational superational superational superational subal.</s>