Discrete state spaces represent a major computational challenge to statistical inference, since the computation of normalisation constants requires summation over large or possibly infinite sets, which can be impractical. This paper addresses this computational challenge through the development of a novel generalised Bayesian inference procedure suitable for discrete intractable likelihood. Inspired by recent methodological advances for continuous data, the main idea is to update beliefs about model parameters using a discrete Fisher divergence, in lieu of the problematic intractable likelihood. The result is a generalised posterior that can be sampled using standard computational tools, such as Markov chain Monte Carlo, circumventing the intractable normalising constant. The statistical properties of the generalised posterior are analysed, with sufficient conditions for posterior consistency and asymptotic normality established. In addition, a novel and general approach to calibration of generalised posteriors is proposed. Applications are presented on lattice models for discrete spatial data and on multivariate models for count data, where in each case the methodology facilitates generalised Bayesian inference at low computational cost.
翻译:由于正常化常数的计算要求对大型或可能无限的常数进行总和,这可能不切实际。本文件通过开发适合离散难可能性的新颖通用贝耶斯推论程序,应对这一计算挑战。受最近连续数据方法进展的启发,主要想法是更新关于模型参数的信念,使用离散远方数据差异,取代棘手的棘手可能性。结果是一个一般化的后遗物,可以使用标准计算工具(如Markov链 Monte Carlo)取样,绕过难处理的常态常数。对一般化后遗物的统计特性进行了分析,为远端一致性和无损正常性规定了充分的条件。此外,还提出了对一般远端远端远地点的远地点进行校准的新颖和一般方法。对离散空间数据采用拉蒂模型,对计数数据采用多变模型,在每种情况下,该方法都有利于以低计算成本普遍推断贝耶斯人。