In this paper, we propose a parametrised factor that enables inference on Gaussian networks where linear dependencies exist among the random variables. Our factor representation is effectively a generalisation of traditional Gaussian parametrisations where the positive-definite constraint of the covariance matrix has been relaxed. For this purpose, we derive various statistical operations and results (such as marginalisation, multiplication and affine transformations of random variables) that extend the capabilities of Gaussian factors to these degenerate settings. By using this principled factor definition, degeneracies can be accommodated accurately and automatically at little additional computational cost. As illustration, we apply our methodology to a representative example involving recursive state estimation of cooperative mobile robots.
翻译:在本文中,我们提出一个假设因素,以便能够在随机变量中存在线性依赖的高斯网络上作出推断。我们的因素代表实际上就是对传统的高斯偏差的概括化,因为共变矩阵的正-定限制已经放松。为此,我们得出各种统计操作和结果(如随机变量的边缘化、倍增和亲和偏差转换),将高斯系数的能力扩大到这些退化的环境。通过使用这一原则性因素定义,可以准确和自动地以少量的额外计算成本来适应退化。例如,我们用我们的方法对涉及合作移动机器人的周期性状态估计的典型采用。