Analyzing multi-way measurements with variations across one mode of the dataset is a challenge in various fields including data mining, neuroscience and chemometrics. For example, measurements may evolve over time or have unaligned time profiles. The PARAFAC2 model has been successfully used to analyze such data by allowing the underlying factor matrices in one mode (i.e., the evolving mode) to change across slices. The traditional approach to fit a PARAFAC2 model is to use an alternating least squares-based algorithm, which handles the constant cross-product constraint of the PARAFAC2 model by implicitly estimating the evolving factor matrices. This approach makes imposing regularization on these factor matrices challenging. There is currently no algorithm to flexibly impose such regularization with general penalty functions and hard constraints. In order to address this challenge and to avoid the implicit estimation, in this paper, we propose an algorithm for fitting PARAFAC2 based on alternating optimization with the alternating direction method of multipliers (AO-ADMM). With numerical experiments on simulated data, we show that the proposed PARAFAC2 AO-ADMM approach allows for flexible constraints, recovers the underlying patterns accurately, and is computationally efficient compared to the state-of-the-art. We also apply our model to a real-world chromatography dataset, and show that constraining the evolving mode improves the interpretability of the extracted patterns.
翻译:分析多路测量方法,以不同的方式对数据集进行差异分析,是不同领域的挑战,包括数据挖掘、神经科学和化学计量,例如,测量可能随着时间变化而变化,或具有不统一的时间轮廓。PARAFAC2模型已被成功地用于分析这些数据,允许以一种模式(即演进模式)对切片进行变化,从而允许基本要素矩阵(即演进模式)进行跨切片变化。适应PARAFAC2模型的传统方法是使用一种交替的、基于最小方位的算法,这种算法通过隐含地估计进化要素矩阵来处理PARAFAC2模型的经常性交叉产品限制。这种方法使这些因素矩阵的正规化变得具有挑战性。目前没有任何算法可以灵活地以一般惩罚功能和硬性限制来实施这种正规化。为了应对这一挑战并避免隐含的估算,我们在本文中建议采用一种算法,根据乘数的交替方向方法(AO-ADMM)来处理PARARAFAC2 A-AMAC2模型的不断交叉的算法。我们提议的ARO-AMADMMT方法允许灵活限制,并恢复了这些要素矩阵的可调节性。为了应对模型的可变现性,现在的精确的精确地和精确地计算,我们的数据模型的精确地计算方法也显示了我们的数据的精确地显示了一种状态。我们对世界的精确的精确的精确和精确的精确的精确的计算。