We present a decentralized path-planning algorithm for navigating multiple differential-drive robots in dense environments. In contrast to prior decentralized methods, we propose a novel congestion metric-based replanning that couples local and global planning techniques to efficiently navigate in scenarios with multiple corridors. To handle dense scenes with narrow passages, our approach computes the initial path for each agent to its assigned goal using a lattice planner. Based on neighbors' information, each agent performs online replanning using a congestion metric that tends to reduce the collisions and improves the navigation performance. Furthermore, we use the Voronoi cells of each agent to plan the local motion as well as a corridor selection strategy to limit the congestion in narrow passages. We evaluate the performance of our approach in complex warehouse-like scenes and demonstrate improved performance and efficiency over prior methods. In addition, our approach results in a higher success rate in terms of collision-free navigation to the goals.
翻译:我们提出了在密集环境中导航多种不同驾驶机器人的分散路径规划算法。与以往的分散方法不同,我们提出了一种新的拥挤计量规划,即当地和全球规划技术对夫妇采用本地和全球规划技术,以便在多走廊的情景下有效导航。为了用狭窄的通道处理密集的场景,我们的方法是使用一个拉蒂斯平板计算每个代理人的初始路径,以达到其指定目标。根据邻居的信息,每个代理人使用堵塞计量法进行在线规划,该计量法倾向于减少碰撞并改进导航性能。此外,我们利用每个代理人的沃罗诺伊细胞来规划地方运动,以及一个走廊选择战略来限制狭窄通道的拥堵。我们评估了我们在复杂仓储式场景区的做法的绩效,并展示了比以往方法更好的性能和效率。此外,我们的方法在不碰撞地导航目标方面取得了更高的成功率。