Coulomb interaction, following an inverse-square force-law, quantifies the amount of force between two stationary, electrically charged particles. The long-range nature of Coulomb interactions poses a major challenge to molecular dynamics simulations which are major tools for problems at the nano-/micro- scale. Various algorithms aim to speed up the pairwise Coulomb interactions to a linear scaling but the poor scalability limits the size of simulated systems. Here, we conduct an efficient molecular dynamics algorithm with the random batch Ewald method on all-atom systems where the complete Fourier components in the Coulomb interaction are replaced by randomly selected mini batches. By simulating the N-body systems up to 100 million particles using 10 thousand CPU cores, we show that this algorithm furnishes O(N) complexity, almost perfect scalability and an order of magnitude faster computational speed when compared to the existing state-of-the-art algorithms. Further examinations of our algorithm on distinct systems, including pure water, micro-phase-separated electrolyte and protein solution demonstrate that the spatiotemporal information on all time and length scales investigated and thermodynamic quantities derived from our algorithm are in perfect agreement with those obtained from the existing algorithms. Therefore, our algorithm provides a breakthrough solution on scalability of computing the Coulomb interaction. It is particularly useful and cost-effective to simulate ultra-large systems, which was either impossible or very costing to conduct using existing algorithms, thus would benefit the broad community of sciences.
翻译:库伦互动,根据反方方形力量法,量化了两个固定的、电动粒子之间的强度。库伦互动的远距离性质对分子动态模拟提出了重大挑战,而分子动态模拟是纳米/微缩规模问题的主要工具。各种算法旨在将对称库伦互动加速到线缩放,但缩放性差限制了模拟系统的规模。在这里,我们用随机批量的埃瓦尔德方法,在全方位系统上进行高效的分子动态算法,用随机选择的微型批量取代了库伦互动的完整Fourier组件。通过利用10 000 CPU核心模拟最多达1亿个粒子的分子动态模拟。我们表明,这种算法提供了O(N)的复杂度、几乎完美的缩放性和数量,而计算速度则限制了模拟系统的规模。我们对于不同系统的算法,包括纯水、微档分断裂电动和蛋白质的计算方法,或者通过随机选取的混合成本计算方法来取代了全方形系统。因此,从现有极级的算法分析中,从现有极易变变的算方法,提供了我们现有成本的计算方法,从现有算算法,从现有算法的精确的计算方法,从现有算算算法质量到现在的准确的计算方法,从现有算算法,从现有算算算法质量到现在的计算,可以提供更精确的计算,从一个最精确的计算,从现有算法,从现有计算,从现有计算,从现有,到更精确级计算方法,从现有算法,从现有算算法,从现有,从一个最精确的计算,到从现有,从一个最精确的计算,到从现有,从一个最精确的计算,到从现有,到从现有计算,从现有,从一个最精确的计算,从一个最精确的计算,从一个级的计算,从一个级的计算,从一个,从一个,从一个级的算法,到更量的计算方法,到更量的计算方法,从现有算法,从现有,从现有,从一个级数级数级数级数级数级数级数级数级数级数级的计算,从一个级数级数级数级数级数级数级数级数级数级数级的计算,从一个